NUMERICAL METHODS 
FOR MATHEMATICAL PHYSICS INVERSE PROBLEMS

Lecture 2. Minimization of functions
We know that the inverse problems can be transformed to the problems of finding of extremum. So the practical methods of inverse problems theory are based on the optimization methods. We will consider at first methods of minimization for the functions of one variable as easiest optimization methods. It will be the stationary condition and gradient method. 

2.1. Stationary condition
Consider the easiest extremum problem.
Problem 2.1. Minimize the function f on the set of real numbers.

Theorem 2.1. If the differentiable function 
[image: image1.wmf]()

ffx

=

 has the minimum at the point (,  then it satisfies the equality
                                                                                
[image: image2.wmf]()0.

f

t

¢

=

                                                                          (2.1)
Proof. If ( is a point of the minimum of the function f, then we have the inequality
f(() (  f(( ) ((.
So
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Using Taylor’s series, we get 
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where ((h)/h(0 if h(0. We obtain
                                                            f '(()h + ((h) ( 0 (h.                                                     (2.2)

Suppose h>0. Then we get
f '(() + ((h)/h ( 0. 

After passing to the limit as h(0 we obtain 
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By (2.2) with h<0 we have 

f '(() + ((h)/h ( 0, 

After passing to the limit as h(0 we get 

                                                                   f '(() ( 0.                                                                  (2.4)

Using (2.3), (2.4) we have the equality (2.2).                                                                              (
The formula (2.1) is the equation with respect to the unknown value (.
Definition 2.1. The equality (2.1) is called the stationary condition or Fermat condition, and it solution is called the stationary point of the function f.
	Question: What kind of equations has Euler equation?


The stationary condition is the algebraic equation with respect to the known points of the minimum.

	Conclusion: The problem of the function minimization can be transformed to the algebraic equation.


2.2. Examples

We consider some example of the stationary condition application.
Example 2.1. Consider the function 
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 The equation (2.1) can be transformed to 
[image: image5.wmf]20.

t

=

 Its unique solution 
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 is the point of minimum for the function 
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 (see Figure 2.1).                     
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Figure 2.1. Unique stationary point is the point of the absolute minimum.

Example 2.2. Consider the function 
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 Determine the stationary conditions 
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 It has three solutions 
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 We find 
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 The first solution is a point of absolute minimum of 
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 (see Figure 2.2). The second solution is the point of the local maximum, and the third solution is the point of the local minimum.                                                                                                   (
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 1   –   absolute   minimum    2   –   local maximum    3   –   local   minimum    
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Figure 2.2. The stationary points of the function 
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Definition 2.2 (see Figure 2.3). The function f has the local minimum (local maximum) in the point (, if there exists a neighbourhood O of this point such that 
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 If the equality is true only for 
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 then we have the strong local minimum (strong local maximum). If these inequalities are true for all (, then ( is the point of the absolute minimum (absolute maximum).
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Figure 2.3. Classes of the extremum.

Let us consider an extremum problem P and a condition Q. 
Definition 2.3 (see Figure 2.4). The condition Q is called necessary condition of the extremum if it is true for all solution of the Problem P. It is called the sufficient condition of the extremum if all solution of Q is the solution of the problem P.  
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Figure 2.4. Relation between the set U0 of the solutions of the extremum problem 
and the set U* of the solutions of the condition of the extremum.

The stationary condition is the necessary condition of the minimum or maximum.

Example 2.3. Consider the function 
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 We find three stationary point 
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 The second point is the point of the local maximum. The first and the third points are the points of the absolute extremum. So this problem has two solutions (see Figure 2.5).                                                                                                                                (
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Figure 2.5. The function has two points of the minimum.

Example 2.4. Consider the function 
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 The stationary condition transforms to 
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 It is not solvable. This problem is unsolvable too (see Figure 2.6). However the sets of the solutions of the problem and the set of the stationary points are equaled (empty). Then we have necessary and sufficient conditions of optimality.                                                         (
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Figure 2.6. The stationary points for the unsolvable problem are absent.

Example 2.5. Consider the function 
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 The necessary condition of the optimality has the unique solution 
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 which is not the point of the minimum (see Figure 2.7). The problem is unsolvable here. So the stationary condition is only sufficient.                                   (

[image: image33.emf] 

f 5  

 =0  

5

()0 f







   


Figure 2.7. The unique stationary point is not the point of the minimum.

Example 2.6. Consider the function 
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 It is not differentiable (see Figure 2.7). So the stationary condition is not applicable here. Therefore it is necessary to use other methods for solving this problem.                                                                                                                      (
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Figure 2.8. The stationary condition is not applicable for the function, which is not differentiable. 
2.3. Gradient method

Using stationary condition we transform the problem of function minimization to the algebraic equation. It is nonlinear equation for the general case. Its resolution can be difficult enough problem. It can be solved with using of iterative methods. 
Let us have an algebraic equation
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It can be solved by simple iterative method
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where k​ is the number of the iteration, 
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 is a numerical iterative parameter. We can calculate the sequence 
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 for each iteration. That is the basic idea of the simple iterative method? Let the sequence 
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 so we obtain 
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 Let us have the convergence 
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 (for the easiest cast we can suppose that the iterative parameter does not depend from the number of the iteration). Passing to the limit in (2.6), we get 
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if the function F is continuous. So the number x satisfies the equation (2.5).  Thus the limit of our sequence is the solution of the given algebraic equation (2.5). Note that the result does not depend from the initial approximation and the choosing of the iterative parameter. However this result is true for the convergence of the sequence 
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 only. Certainly the fact of the convergence and its velocity can be depending very much from the initial approximation and the iterative parameter.
The simple iterative methods (2.6) for the stationary condition (2.1) is the relation
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This method does not depend of the sign of the iterative parameter in principle. However note that in really we have the problem of minimization of the function f. We know that if the function increase at the point 
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[image: image53.wmf]1

k

t

+

 greater than 
[image: image54.wmf]k

t

. Therefore we will be used following form of iterative method
                                           
[image: image55.wmf]1

()

, 0,1,...,

kkkk

fk

ttbt

+

¢

=-=

                                   (2.7)                                               
where the iterative parameter 
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 is positive. The algorithm (2.7) is called the gradient method.

There exists a lot of form of the gradient method. It depends from choosing of the iterative parameter
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Next step

We know that practical inverse problems can be the problem of finding different forms of the systems parameter. It can be a number, a vector, a function, a vector-function. So we have the necessity to extend the gradient method to the problems of minimization functions of many variables and general functionals. If we can determine the derivatives of functionals, we will can to determine the gradient method for the general case. It will be our next step.   
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